Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Benzyl-2-phenyl-1*H*-benzimidazole– 4,4'-(cyclohexane-1,1-diyl)diphenol (1/1)

Chunhua Ge,* Rui Zhang, Xiangdong Zhang and Su Li

College of Chemistry, Liaoning University, Shenyang, Liaoning 110036, People's Republic of China

Correspondence e-mail: chhge@lnu.edu.cn

Received 31 May 2011; accepted 19 June 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.069; wR factor = 0.140; data-to-parameter ratio = 15.0.

The asymmetric unit of the title co-crystal, $C_{20}H_{16}N_{2}$ ·- $C_{18}H_{20}O_2$, contains one molecule of 4,4'-(cyclohexane-1,1diyl)diphenol (in which the cyclohexane ring adopts a chair conformation) and one molecule of 1-benzyl-2-phenyl-1*H*benzimidazole, which are paired through an O-H···N hydrogen bond. These pairs are further linked by intermolecular O-H···O hydrogen bonds into chains along [010]. Weak intermolecular C-H···O and C-H··· π interactions further consolidate the crystal packing. The dihedral angles between the pendant phenyl rings and the benzimidazole ring are 86.9 (2) and 43.1 (2)°.

Related literature

For the synthesis of 1,1-bis(4-hydroxyphenyl)cyclohexane, see: Yoshizawa *et al.*(2007). For related structures, see: Caira *et al.* (1995, 1997); Coupar *et al.* (1997); Lavy & Kaftory (2006); MacLean *et al.* (1999).

Experimental

Crystal data

$C_{20}H_{16}N_2 \cdot C_{18}H_{20}O_2$	c = 14.462 (4)
$M_r = 552.69$	$\alpha = 102.518$ (5
Triclinic, P1	$\beta = 94.156(5)$
a = 10.448 (3) Å	$\gamma = 108.605$ (5)
b = 10.853 (3) Å	V = 1499.5 (7)

Z = 2Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector	8312 measured reflections
diffractometer	5714 independent reflections
Absorption correction: multi-scan	3748 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.023$
$T_{\min} = 0.982, \ T_{\max} = 0.989$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.069$ 381 parameters $wR(F^2) = 0.140$ H-atom parameters constrainedS = 1.07 $\Delta \rho_{max} = 0.19$ e Å $^{-3}$ 5714 reflections $\Delta \rho_{min} = -0.20$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C19-C24 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D1 - H1 \cdots N2 D2 - H2 \cdots O1^{i} C29 - H29 \cdots O2^{ii} C32 - H32A \cdots Cg^{iii}$	0.82	1.87	2.677 (3)	166
	0.82	1.91	2.718 (3)	168
	0.93	2.64	3.467 (4)	148
	0.97	2.77	3.403 (4)	123

Symmetry codes: (i) x, y + 1, z; (ii) x - 1, y - 1, z; (iii) -x, -y + 1, -z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*, *PLATON* (Spek, 2009) and *WinGX* (Farrugia, 1999).

This work was supported by the National Natural Science Foundation of China (grant No. 20971062/B010303) and the Project for Provincial Key Laboratory of Liaoning Province, China (grant No. 2008S104).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5112).

References

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Caira, M. R., Horne, A., Nassimbeni, L. R., Okuda, K. & Toda, F. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1063–1067.

Caira, M. R., Horne, A., Nassimbeni, L. R. & Toda, F. (1997). J. Mater. Chem. 7, 2145-2149.

Coupar, P. I., Glidewell, C. & Ferguson, G. (1997). Acta Cryst. B53, 521–533. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Lavy, T. & Kaftory, M. (2006). Acta Cryst. E62, 03977–03978.

MacLean, E. J., Glidewell, C., Ferguson, G., Gregson, R. M. & Lough, A. J. (1999). Acta Cryst. C55, 1867–1870.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Yoshizawa, K., Toyota, S., Toda, F., Kato, M. & Csöregh, I. (2007). CrystEngComm, 9, 786-792.

organic compounds

 $0.20 \times 0.18 \times 0.18 \; \mathrm{mm}$

T = 293 K

Acta Cryst. (2011). E67, o1829 [doi:10.1107/S1600536811024007]

1-Benzyl-2-phenyl-1*H*-benzimidazole-4,4'-(cyclohexane-1,1-diyl)diphenol (1/1)

C. Ge, R. Zhang, X. Zhang and S. Li

Comment

1,1-Bis(4-hydroxyphenyl)cyclohexane(BHC) is one of the most popular candidate for efficient and versatile synthesis of self-organized systems with specific properties and functions. The groups of BHC can participate in intermolecular hydrogen bonding, $\pi \cdots \pi$ and other interactions(for examples, see: Caira *et al.*, 1995,1997; Coupar *et al.*,1997; Lavy & Kaftory, 2006; MacLean *et al.*, 1999). BHC forms not only inclusion complex with neutral molecule but also supramolecular framework with the organic base. Here, we report the 1:1 cocrystal of BHC with 1-benzyl-2-phenyl-1*H*-benzo[*d*]imidazole(BPBI), a *N*-containing compound.

The asymmetric unit of the title cocrystal (Fig. 1) contains one molecule of BHC and one molecule of 1-benzyl-2-phenyl-1*H*-benzo[*d*]imidazole, which are paired through the O—H···N hydrogen bond (Table 1). These pairs are further linked by intermolecular O—H···O hydrogen bonds (Table 1) into chains in [010] (Fig. 2). Weak intermolecular C—H···O and C—H··· π interactions (Table 1) consolidate further the crystal packing.

Experimental

1,1-Bis(4-hydroxyphenyl)cyclohexane (BHC) was synthesized according to the known procedure (Yoshizawa *et al.*, 2007). To the BHC (0.1 mmol) in methanol (25 ml) was added 1-benzyl-2-phenyl-1*H*-benzo[*d*]imidazole (0.1 mmol) in methanol(5 ml) dropwise. The resulting mixture was stirred for 2 h at room temperature then filtered. Crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent in a few days.

Refinement

H atoms were positioned geometrically (C—H 0.93-0.97 Å; O—H 0.82 Å), and refined using a riding model, with $U_{iso}(H) = 1.2-1.5 U_{eq}(C, O)$.

Figures

Fig. 1. A content of asymmetric unit of (I), with displacement ellipsoids shown at the 50% probability level. Dashed line denotes hydrogen bond.

Fig. 2. A portion of the crystal packing showing hydrogen-bonded (dashed lines) chains.

1-Benzyl-2-phenyl-1*H*-benzimidazole-4,4¹-(cyclohexane-1,1-diyl)diphenol (1/1)

Crystal data	
$C_{20}H_{16}N_2 \cdot C_{18}H_{20}O_2$	Z = 2
$M_r = 552.69$	F(000) = 588
Triclinic, <i>P</i> T	$D_{\rm x} = 1.224 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.448 (3) Å	Cell parameters from 184 reflections
b = 10.853 (3) Å	$\theta = 2.5 - 22.6^{\circ}$
c = 14.462 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 102.518 (5)^{\circ}$	T = 293 K
$\beta = 94.156 \ (5)^{\circ}$	Block, colourless
$\gamma = 108.605 \ (5)^{\circ}$	$0.20\times0.18\times0.18~mm$
V = 1499.5 (7) Å ³	

Data collection

Bruker SMART CCD area-detector diffractometer	5714 independent reflections
Radiation source: fine-focus sealed tube	3748 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.023$
ϕ and ω scans	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -12 \rightarrow 6$
$T_{\min} = 0.982, \ T_{\max} = 0.989$	$k = -13 \rightarrow 13$
8312 measured reflections	$l = -16 \rightarrow 17$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.069$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.140$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_0^2) + (0.0378P)^2 + 0.5518P]$

	where $P = (F_0^2 + 2F_c^2)/3$
5714 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
381 parameters	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N2	0.0175 (2)	0.4318 (2)	0.19242 (13)	0.0456 (5)
01	0.1024 (2)	0.47607 (17)	0.37964 (12)	0.0580 (5)
H1	0.0730	0.4737	0.3249	0.087*
C4	0.2918 (2)	1.1141 (2)	0.57332 (18)	0.0468 (6)
C16	0.1443 (2)	0.6055 (2)	0.43496 (17)	0.0445 (6)
C13	0.2359 (2)	0.8657 (2)	0.55696 (17)	0.0439 (6)
O2	0.3146 (2)	1.3869 (2)	0.40445 (16)	0.0745 (6)
H2	0.2436	1.4035	0.3989	0.112*
C7	0.2832 (2)	1.0050 (3)	0.62764 (17)	0.0480 (6)
C2	0.1855 (3)	1.2431 (3)	0.49660 (19)	0.0557 (7)
H2A	0.1089	1.2661	0.4837	0.067*
C18	0.2299 (3)	0.7534 (3)	0.59002 (18)	0.0566 (7)
H18	0.2573	0.7651	0.6549	0.068*
C14	0.1943 (3)	0.8422 (3)	0.45984 (18)	0.0501 (7)
H14	0.1971	0.9145	0.4344	0.060*
C15	0.1486 (3)	0.7141 (3)	0.39961 (18)	0.0531 (7)
H15	0.1205	0.7015	0.3347	0.064*
C1	0.3033 (3)	1.2990 (3)	0.46111 (18)	0.0524 (7)
C5	0.4091 (3)	1.1736 (3)	0.5369 (2)	0.0600 (8)
H5	0.4861	1.1509	0.5494	0.072*
C17	0.1853 (3)	0.6261 (3)	0.53100 (18)	0.0551 (7)
H17	0.1829	0.5535	0.5561	0.066*
C3	0.1813 (3)	1.1523 (3)	0.55157 (19)	0.0532 (7)
H3	0.1007	1.1156	0.5748	0.064*
C8	0.1806 (3)	1.0029 (3)	0.69993 (19)	0.0614 (8)
H8A	0.0931	0.9937	0.6662	0.074*
H8B	0.1678	0.9245	0.7250	0.074*
C12	0.4235 (3)	1.0307 (3)	0.6858 (2)	0.0631 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H12A	0.4185	0.9541	0.7115	0.076*
H12B	0.4917	1.0389	0.6433	0.076*
C6	0.4154 (3)	1.2649 (3)	0.4827 (2)	0.0644 (8)
H6	0.4964	1.3037	0.4606	0.077*
C9	0.2249 (4)	1.1275 (3)	0.7835 (2)	0.0811 (10)
H9A	0.2286	1.2054	0.7599	0.097*
H9B	0.1584	1.1172	0.8273	0.097*
C11	0.4678 (3)	1.1575 (3)	0.7681 (2)	0.0827 (10)
H11A	0.5558	1.1692	0.8025	0.099*
H11B	0.4779	1.2351	0.7425	0.099*
C10	0.3643 (4)	1.1491 (4)	0.8364 (2)	0.0944 (12)
H10A	0.3933	1.2316	0.8871	0.113*
H10B	0.3586	1.0753	0.8655	0.113*
N1	-0.07922 (19)	0.33432 (19)	0.04038 (13)	0.0413 (5)
C25	-0.0994 (2)	0.3712 (2)	0.13303 (16)	0.0404 (6)
C33	-0.1767 (2)	0.1317 (2)	-0.09418 (17)	0.0426 (6)
C24	0.1194 (2)	0.4352 (2)	0.13605 (18)	0.0432 (6)
C19	0.0607 (3)	0.3762 (2)	0.04057 (17)	0.0424 (6)
C31	-0.2442 (3)	0.4599 (3)	0.23510 (17)	0.0543 (7)
H31	-0.1693	0.5385	0.2583	0.065*
C32	-0.1785 (3)	0.2693 (2)	-0.04718 (17)	0.0483 (6)
H32A	-0.1588	0.3253	-0.0920	0.058*
H32B	-0.2692	0.2614	-0.0320	0.058*
C26	-0.2322 (2)	0.3557 (3)	0.16609 (17)	0.0454 (6)
C27	-0.3451 (3)	0.2390 (3)	0.1330 (2)	0.0581 (7)
H27	-0.3386	0.1673	0.0873	0.070*
C34	-0.1608 (3)	0.0442 (3)	-0.04193 (19)	0.0553 (7)
H34	-0.1518	0.0694	0.0246	0.066*
C20	0.1377 (3)	0.3717 (3)	-0.0330 (2)	0.0561 (7)
H20	0.0974	0.3337	-0.0967	0.067*
C38	-0.1905 (3)	0.0911 (3)	-0.19258 (19)	0.0587 (7)
H38	-0.2022	0.1483	-0.2293	0.070*
C23	0.2607 (3)	0.4865 (3)	0.1614 (2)	0.0598 (8)
H23	0.3016	0.5230	0.2251	0.072*
C36	-0.1697 (3)	-0.1183 (3)	-0.1844 (3)	0.0725 (9)
H36	-0.1657	-0.2015	-0.2148	0.087*
C30	-0.3654 (3)	0.4488 (3)	0.2699 (2)	0.0656 (8)
H30	-0.3721	0.5196	0.3165	0.079*
C35	-0.1581 (3)	-0.0805 (3)	-0.0871 (2)	0.0673 (8)
H35	-0.1483	-0.1390	-0.0510	0.081*
C37	-0.1872 (3)	-0.0328 (3)	-0.2369 (2)	0.0742 (9)
H37	-0.1970	-0.0589	-0.3034	0.089*
C22	0.3371 (3)	0.4812 (3)	0.0887 (3)	0.0704 (9)
H22	0.4319	0.5152	0.1035	0.084*
C21	0.2769 (3)	0.4265 (3)	-0.0069(3)	0.0708 (9)
H21	0.3325	0.4271	-0.0543	0.085*
C29	-0.4765 (3)	0.3332 (4)	0.2357 (2)	0.0748 (9)
H29	-0.5586	0.3257	0.2590	0.090*
C28	-0.4667 (3)	0.2288 (3)	0.1675 (2)	0.0713 (9)

H28	-0.5422	0.1508	0.1443	0.0	86*	
Atomic displacer	nent parameters ($(Å^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N2	0.0505 (12)	0.0408 (13)	0.0384 (12)	0.0127 (10)	0.0006 (9)	0.0022 (10)
01	0.0849 (14)	0.0406 (11)	0.0403 (10)	0.0203 (9)	-0.0058 (9)	0.0006 (9)
C4	0.0486 (15)	0.0336 (15)	0.0524 (16)	0.0164 (11)	0.0046 (12)	-0.0035 (12)
C16	0.0545 (15)	0.0367 (15)	0.0384 (14)	0.0172 (12)	0.0031 (11)	0.0006 (12)
C13	0.0491 (14)	0.0398 (15)	0.0422 (15)	0.0184 (11)	0.0063 (11)	0.0047 (12)
O2	0.0945 (16)	0.0678 (15)	0.0760 (14)	0.0394 (12)	0.0260 (13)	0.0267 (12)
C7	0.0539 (15)	0.0401 (16)	0.0459 (15)	0.0192 (12)	0.0035 (12)	-0.0005 (12)
C2	0.0561 (17)	0.0457 (17)	0.0645 (18)	0.0246 (13)	0.0048 (13)	0.0031 (15)
C18	0.085 (2)	0.0469 (18)	0.0338 (14)	0.0258 (14)	-0.0013 (13)	0.0012 (13)
C14	0.0653 (17)	0.0399 (16)	0.0464 (16)	0.0218 (12)	0.0027 (12)	0.0101 (13)
C15	0.0729 (18)	0.0469 (18)	0.0350 (14)	0.0201 (13)	-0.0010 (12)	0.0048 (13)
C1	0.0694 (19)	0.0369 (16)	0.0470 (16)	0.0201 (13)	0.0088 (13)	0.0000 (13)
C5	0.0508 (16)	0.0599 (19)	0.074 (2)	0.0265 (14)	0.0088 (14)	0.0146 (16)
C17	0.085 (2)	0.0410 (17)	0.0388 (15)	0.0244 (14)	0.0024 (13)	0.0084 (13)
C3	0.0468 (15)	0.0411 (16)	0.0688 (18)	0.0157 (12)	0.0084 (13)	0.0070 (14)
C8	0.078 (2)	0.0527 (19)	0.0530 (17)	0.0271 (15)	0.0152 (14)	0.0029 (14)
C12	0.0691 (19)	0.0502 (18)	0.0622 (19)	0.0229 (14)	-0.0080 (14)	0.0006 (15)
C6	0.0558 (18)	0.065 (2)	0.074 (2)	0.0204 (15)	0.0182 (14)	0.0173 (17)
C9	0.117 (3)	0.068 (2)	0.060 (2)	0.045 (2)	0.0215 (19)	-0.0045 (17)
C11	0.090 (2)	0.061 (2)	0.077 (2)	0.0234 (18)	-0.0250 (19)	-0.0104 (18)
C10	0.148 (4)	0.063 (2)	0.056 (2)	0.041 (2)	-0.005 (2)	-0.0190 (18)
N1	0.0518 (12)	0.0338 (12)	0.0336 (11)	0.0154 (9)	0.0019 (9)	-0.0005 (9)
C25	0.0498 (14)	0.0319 (14)	0.0365 (14)	0.0138 (11)	0.0026 (11)	0.0043 (11)
C33	0.0444 (14)	0.0387 (15)	0.0394 (14)	0.0130 (11)	0.0009 (10)	0.0031 (12)
C24	0.0519 (15)	0.0281 (14)	0.0480 (15)	0.0147 (11)	0.0070 (12)	0.0047 (12)
C19	0.0574 (16)	0.0278 (14)	0.0430 (15)	0.0188 (11)	0.0094 (11)	0.0042 (11)
C31	0.0662 (18)	0.0578 (19)	0.0378 (15)	0.0232 (14)	0.0088 (12)	0.0067 (14)
C32	0.0638 (16)	0.0423 (16)	0.0365 (14)	0.0205 (12)	-0.0012 (11)	0.0046 (12)
C26	0.0490 (14)	0.0504 (17)	0.0387 (14)	0.0187 (12)	0.0049 (11)	0.0132 (13)
C27	0.0539 (17)	0.0554 (19)	0.0602 (18)	0.0171 (14)	0.0064 (13)	0.0086 (15)
C34	0.0666 (18)	0.0477 (18)	0.0481 (16)	0.0221 (13)	-0.0040 (13)	0.0053 (14)
C20	0.074 (2)	0.0426 (17)	0.0548 (17)	0.0247 (14)	0.0210 (14)	0.0084 (14)
C38	0.0746 (19)	0.0499 (19)	0.0454 (17)	0.0181 (14)	0.0064 (13)	0.0051 (14)
C23	0.0523 (17)	0.0498 (18)	0.071 (2)	0.0139 (13)	0.0010 (14)	0.0111 (15)
C36	0.068 (2)	0.0382 (18)	0.095 (3)	0.0189 (14)	0.0056 (17)	-0.0159 (18)
C30	0.082 (2)	0.083 (2)	0.0453 (17)	0.0480 (19)	0.0192 (15)	0.0112 (16)
C35	0.071 (2)	0.0400 (18)	0.086 (2)	0.0220 (14)	-0.0039 (16)	0.0076 (17)
C37	0.088 (2)	0.059 (2)	0.0563 (19)	0.0181 (17)	0.0118 (16)	-0.0126 (17)
C22	0.0497 (17)	0.059 (2)	0.104 (3)	0.0182 (14)	0.0181 (17)	0.0216 (19)
C21	0.075 (2)	0.060 (2)	0.088 (2)	0.0309 (17)	0.0385 (18)	0.0202 (18)
C29	0.0573 (19)	0.103 (3)	0.073 (2)	0.0332 (19)	0.0190 (16)	0.030 (2)
C28	0.0513 (18)	0.076 (2)	0.080 (2)	0.0163 (15)	0.0083 (15)	0.0151 (19)

Geometric parameters (Å, °)

N2—C25	1.323 (3)	C10—H10A	0.9700
N2-C24	1.383 (3)	C10—H10B	0.9700
O1—C16	1.369 (3)	N1—C25	1.365 (3)
O1—H1	0.8200	N1—C19	1.385 (3)
C4—C3	1.383 (3)	N1—C32	1.460 (3)
C4—C5	1.391 (3)	C25—C26	1.471 (3)
C4—C7	1.541 (4)	C33—C34	1.376 (4)
C16—C17	1.372 (3)	C33—C38	1.378 (3)
C16—C15	1.373 (3)	C33—C32	1.507 (3)
C13—C14	1.383 (3)	C24—C23	1.391 (3)
C13—C18	1.388 (3)	C24—C19	1.391 (3)
C13—C7	1.534 (3)	C19—C20	1.381 (3)
O2—C1	1.369 (3)	C31—C30	1.376 (4)
O2—H2	0.8200	C31—C26	1.382 (4)
C7—C12	1.547 (3)	C31—H31	0.9300
С7—С8	1.549 (3)	C32—H32A	0.9700
C2—C1	1.377 (4)	С32—Н32В	0.9700
C2—C3	1.386 (4)	C26—C27	1.388 (3)
C2—H2A	0.9300	C27—C28	1.379 (4)
C18—C17	1.369 (3)	С27—Н27	0.9300
C18—H18	0.9300	C34—C35	1.379 (4)
C14—C15	1.382 (3)	С34—Н34	0.9300
C14—H14	0.9300	C20—C21	1.372 (4)
C15—H15	0.9300	С20—Н20	0.9300
C1—C6	1.371 (4)	C38—C37	1.372 (4)
C5—C6	1.380 (4)	C38—H38	0.9300
С5—Н5	0.9300	C23—C22	1.367 (4)
С17—Н17	0.9300	С23—Н23	0.9300
С3—Н3	0.9300	C36—C35	1.362 (4)
C8—C9	1.522 (4)	C36—C37	1.364 (5)
C8—H8A	0.9700	С36—Н36	0.9300
C8—H8B	0.9700	C30—C29	1.373 (4)
C12—C11	1.527 (4)	С30—Н30	0.9300
C12—H12A	0.9700	С35—Н35	0.9300
C12—H12B	0.9700	С37—Н37	0.9300
С6—Н6	0.9300	C22—C21	1.393 (4)
C9—C10	1.518 (5)	C22—H22	0.9300
С9—Н9А	0.9700	C21—H21	0.9300
С9—Н9В	0.9700	C29—C28	1.368 (4)
C11—C10	1.511 (5)	С29—Н29	0.9300
C11—H11A	0.9700	C28—H28	0.9300
C11—H11B	0.9700		
C25—N2—C24	105.9 (2)	С9—С10—Н10А	109.6
С16—О1—Н1	109.5	C11—C10—H10B	109.6
C3—C4—C5	115.6 (3)	C9—C10—H10B	109.6
C3—C4—C7	122.6 (2)	H10A—C10—H10B	108.1

C5—C4—C7	121.7 (2)	C25—N1—C19	107.00 (18)
O1—C16—C17	117.2 (2)	C25—N1—C32	129.9 (2)
O1-C16-C15	123.8 (2)	C19—N1—C32	123.0 (2)
C17—C16—C15	118.9 (2)	N2-C25-N1	111.9 (2)
C14—C13—C18	116.0 (2)	N2-C25-C26	121.9 (2)
C14—C13—C7	124.1 (2)	N1-C25-C26	126.0 (2)
C18—C13—C7	119.9 (2)	C34—C33—C38	118.2 (3)
C1—O2—H2	109.5	C34—C33—C32	122.2 (2)
C13—C7—C4	110.2 (2)	C38—C33—C32	119.6 (2)
C13—C7—C12	109.1 (2)	N2—C24—C23	130.2 (2)
C4—C7—C12	110.9 (2)	N2-C24-C19	109.5 (2)
C13—C7—C8	107.9 (2)	C23—C24—C19	120.3 (2)
C4—C7—C8	111.6 (2)	C20-C19-N1	131.8 (2)
C12—C7—C8	106.9 (2)	C20-C19-C24	122.5 (2)
C1—C2—C3	120.0 (3)	N1—C19—C24	105.7 (2)
C1—C2—H2A	120.0	C30-C31-C26	120.9 (3)
C3—C2—H2A	120.0	С30—С31—Н31	119.6
C17—C18—C13	122.7 (2)	С26—С31—Н31	119.6
C17-C18-H18	118.7	N1—C32—C33	112.5 (2)
C13-C18-H18	118.7	N1—C32—H32A	109.1
C15-C14-C13	121.8 (2)	С33—С32—Н32А	109.1
C15—C14—H14	119.1	N1—C32—H32B	109.1
C13—C14—H14	119.1	C33—C32—H32B	109.1
C16—C15—C14	120.4 (2)	H32A—C32—H32B	107.8
C16—C15—H15	119.8	C31—C26—C27	118.5 (2)
C14—C15—H15	119.8	C31—C26—C25	118.8 (2)
O2—C1—C6	117.8 (3)	C27—C26—C25	122.7 (2)
O2—C1—C2	123.5 (3)	C28—C27—C26	120.4 (3)
C6—C1—C2	118.7 (3)	С28—С27—Н27	119.8
C6—C5—C4	122.4 (3)	С26—С27—Н27	119.8
С6—С5—Н5	118.8	C33—C34—C35	120.7 (3)
С4—С5—Н5	118.8	С33—С34—Н34	119.6
C18—C17—C16	120.1 (3)	С35—С34—Н34	119.6
С18—С17—Н17	120.0	C21—C20—C19	116.4 (3)
С16—С17—Н17	120.0	С21—С20—Н20	121.8
C4—C3—C2	122.8 (3)	С19—С20—Н20	121.8
С4—С3—Н3	118.6	C37—C38—C33	120.6 (3)
С2—С3—Н3	118.6	С37—С38—Н38	119.7
C9—C8—C7	114.1 (2)	С33—С38—Н38	119.7
С9—С8—Н8А	108.7	C22—C23—C24	117.2 (3)
С7—С8—Н8А	108.7	C22—C23—H23	121.4
С9—С8—Н8В	108.7	C24—C23—H23	121.4
С7—С8—Н8В	108.7	C35—C36—C37	119.3 (3)
H8A—C8—H8B	107.6	С35—С36—Н36	120.3
C11—C12—C7	112.4 (2)	С37—С36—Н36	120.3
C11—C12—H12A	109.1	C29—C30—C31	119.9 (3)
C7—C12—H12A	109.1	С29—С30—Н30	120.1
C11—C12—H12B	109.1	С31—С30—Н30	120.1
C7—C12—H12B	109.1	C36—C35—C34	120.4 (3)

H12A—C12—H12B	107.8	С36—С35—Н35	119.8
C1—C6—C5	120.6 (3)	С34—С35—Н35	119.8
С1—С6—Н6	119.7	C36—C37—C38	120.7 (3)
С5—С6—Н6	119.7	С36—С37—Н37	119.6
С10—С9—С8	110.7 (3)	С38—С37—Н37	119.6
С10—С9—Н9А	109.5	C23—C22—C21	121.9 (3)
С8—С9—Н9А	109.5	C23—C22—H22	119.1
С10—С9—Н9В	109.5	C21—C22—H22	119.1
С8—С9—Н9В	109.5	C20—C21—C22	121.7 (3)
Н9А—С9—Н9В	108.1	C20—C21—H21	119.2
C10-C11-C12	111.0 (3)	C22—C21—H21	119.2
C10-C11-H11A	109.4	C28—C29—C30	120.1 (3)
C12—C11—H11A	109.4	C28—C29—H29	120.0
C10-C11-H11B	109.4	C30—C29—H29	120.0
C12—C11—H11B	109.4	C29—C28—C27	120.2 (3)
H11A—C11—H11B	108.0	C29—C28—H28	119.9
С11—С10—С9	110.3 (3)	C27—C28—H28	119.9
C11—C10—H10A	109.6		

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C19–C24 ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1—H1…N2	0.82	1.87	2.677 (3)	166
O2—H2···O1 ⁱ	0.82	1.91	2.718 (3)	168
C29—H29···O2 ⁱⁱ	0.93	2.64	3.467 (4)	148
C32—H32A···Cg ⁱⁱⁱ	0.97	2.77	3.403 (4)	123

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*-1, *y*-1, *z*; (iii) -*x*, -*y*+1, -*z*.

Fig. 1

